Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress

نویسندگان

  • Qingjie Guan
  • Xu Liao
  • Mingliang He
  • Xiufeng Li
  • Zhenyu Wang
  • Haiyan Ma
  • Song Yu
  • Shenkui Liu
چکیده

The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841) was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR). The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT) Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67%) and yield traits (average grain weight 20.6 > 18.15 g). This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast

Na(+) uptake and transport in Kandelia candel and antioxidative defense were investigated under rising NaCl stress from 100 to 300 mM. Salinized K. candel roots had a net Na(+) efflux with a declined flux rate during an extended NaCl exposure. Na(+) buildup in leaves enhanced H2O2 levels, superoxide dismutase (SOD) activity, and increased transcription of CSD gene encoding a Cu/Zn SOD. Sequence...

متن کامل

A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana.

Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To ...

متن کامل

SALINITY TOLERANCE IN BARLEY (HORDEUM VULGARE L.): EFFECTS OF VARYING NaCl, K/Na AND NaHCO3 LEVELS ON CULTIVARS DIFFERING IN TOLERANCE

Although barley (Hordeum vulgare L.) is regarded as salt tolerant among crop plants, its growth and plant development is severely affected by ionic and osmotic stresses in salt-affected soils. To elucidate the tolerance mechanism, growth and ion uptake of three barley cultivars, differing in salt tolerance, were examined under different levels of NaCl, K/Na and NaHCO3 in the root medium. The cu...

متن کامل

Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in ...

متن کامل

Genetic Structure of Salinity Tolerance in Rice at Seedling Stage

The Oryza sativa L. F8 population derived from a cross between salt tolerance cv. Ahlemi Tarom and salt sensitive cv. Neda was used in the study. Germinated seeds floated on water for 3 d, and after were transferred to float on Yoshida's nutrient solution for 11 d. two weeks after sowing, the seedling was transferred to nutrient solution containing 51.19 mM NaCl (electrical conductivity 6 dSm-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017